


Alloy 800 offers general corrosion resistance to many aqueous media and, by virtue of its content of nickel, resists stress corrosion cracking. At elevated temperatures it offers resistance to oxidation, carburization, and sulfidation along with rupture and creep strength. For applications requiring greater resistance to stress rupture and creep, especially at temperatures above 1500°F (816°C), INCOLOY alloys 800H and 800HT are used.

# CHEMICAL COMPTION

|       | C    | Mn | Р    | S    | Si   | Cr | Ni | Ti  | Al  | Al+Ti | Cu   | Fe   |
|-------|------|----|------|------|------|----|----|-----|-----|-------|------|------|
| 800   | 0.02 | 1  | 0.02 | 0.01 | 0.35 | 21 | 32 | 0.4 | 0.4 |       | 0.30 | 39.5 |
| 800H  | 0.02 | 1  | 0.02 | 0.01 | 0.35 | 21 | 32 | 0.4 | 0.4 | -     | 0.30 | 39.5 |
| 800AT |      |    |      |      |      |    |    |     |     |       |      |      |

**Request Quote** 

### APPLICABLE SPECIFICATIONS

| Pipe<br>Seamless | Pipe Welded | Tube<br>Seamless | Sheet/Plate | Bar       | Tube<br>Welded | Fitting   | Forging   |
|------------------|-------------|------------------|-------------|-----------|----------------|-----------|-----------|
| ASTM B407        | ASTM B154   | ASTM B163        | ASTM B409   | ASTM B408 | ASTM B515      | ASTM B564 | ASTM B366 |

# APPLICATIONS

| _ | Industrial Heating<br>Industry radiant tubes | Return bends,<br>muffles, retorts and<br>furnace fixtures | Convection<br>tubing | Quenching<br>system piping                                   | temperature<br>heat            |  |
|---|----------------------------------------------|-----------------------------------------------------------|----------------------|--------------------------------------------------------------|--------------------------------|--|
|   | Petrochemical<br>furnace cracker<br>tubes    | Hydrocarbon<br>Processing Industry<br>catalyst tubing     | Outlet manifolds     | Power Generation<br>Industry steam<br>superheating<br>tubing | Engine thrust-reverser systems |  |

## PHYSICAL PROPERTIES

| Density                | Electrical<br>Resistivity   | Coefficient<br>of Thermal<br>Expansion | Modulus<br>of Rigidity | Modulus<br>of Elasticity | Specific Heat<br>Capacity | Melting Point | Specific Gravity |
|------------------------|-----------------------------|----------------------------------------|------------------------|--------------------------|---------------------------|---------------|------------------|
| 0.287 lb/in³           | 595 Ω circ mil/ft<br>@ 70°F | 7.9 x 10-6 in/in °F<br>(70 - 212°F)    | 78.9 kN/mm²            | 196.5 kN/mm²             | 0.110 BTU/lb-°F           | 2475-2525 °F  | 7.98             |
| 7.94 g/cm <sup>3</sup> | 0.989 μΩ cm @ 20°C          | 14.4 µm/m °C<br>(20 - 100°C)           | 11444 ksi              | 28500 ksi                | 0.460 J/g-°C              | 1357-1385 °C  | 7.98             |

#### MAXIUM PRESSURE WORK

P = Maxium work pressure(psi)
S = Minimum tensile strength of material for a specific temper(it is the value of the tensile strength in psi in Mechanica properties table)
D = Exterior diameter of tube
T = Wall thickness of tube

F = ZT × S
SD
SD

# NON DESTRUCTIVE TESTS

Eddy Current Testing Hydrostatic Testing Air Underwater Testing Ultrasonic Testing (PMI) Positive Material Identification

#### DESTRUCTIVE TESTS

Microstructure Test Tensile Test Expansion Test Optical Spectrometry Test